ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/361464569

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow
Vulnerability in Executable Codes

Chapter in Lecture Notes in Computer Science - June 2022

DOI: 10.1007/978-3-031-09827-7_6

CITATIONS
2

4 authors, including:

Sara Baradaran
University of Southern California

6 PUBLICATIONS 11 CITATIONS

READS
67

s, Mahdi Heidari

)
@ Isfahan University of Technology

4 PUBLICATIONS 10 CITATIONS

SEE PROFILE SEE PROFILE

All content following this page was uploaded by Sara Baradaran on 29 April 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/361464569_A_Unit-Based_Symbolic_Execution_Method_for_Detecting_Heap_Overflow_Vulnerability_in_Executable_Codes?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/361464569_A_Unit-Based_Symbolic_Execution_Method_for_Detecting_Heap_Overflow_Vulnerability_in_Executable_Codes?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara-Baradaran?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara-Baradaran?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Southern_California?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara-Baradaran?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahdi-Heidari-5?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahdi-Heidari-5?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Isfahan_University_of_Technology?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahdi-Heidari-5?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sara-Baradaran?enrichId=rgreq-d9e863f135d23d5e55336b114b26b263-XXX&enrichSource=Y292ZXJQYWdlOzM2MTQ2NDU2OTtBUzoxMTQzMTI4MTIzOTU4ODkzNEAxNzE0NDE2NDIwODE4&el=1_x_10&_esc=publicationCoverPdf

)

Check for
updates

A Unit-Based Symbolic Execution
Method for Detecting Heap Overflow
Vulnerability in Executable Codes

Maryam Mouzarani®®, Ali Kamali®, Sara Baradaran®,
and Mahdi Heidari

Department of Electrical and Computer Engineering,
Isfahan University of Technology, Isfahan, Iran
mouzarani@iut.ac.ir, {a .kamali,s. baradaran,heidari}@ec .iut.ac.ir

Abstract. Symbolic execution has been a popular method for detect-
ing vulnerabilities of programs in recent years, yet path explosion has
remained a significant challenge in its application. This paper proposes a
method for improving the efficiency of symbolic execution and detecting
heap overflow vulnerability in executable codes. Instead of applying sym-
bolic execution to the whole program, our method initially determines
test units of the program, which are parts of the code that might contain
heap overflow vulnerability. This is performed through static analysis
and based on the specification of heap overflow vulnerability. Then, it
applies symbolic execution to the test units and extracts a constraint
tree for each unit. Every node in this tree contains the path and vulner-
ability constraints on the unit input data for executing and overflowing
heap buffers in that node. Solving these constraints gives us input values
for the test unit that execute the desired nodes and cause heap over-
flow. Finally, we use curve fitting and treatment learning to approximate
the relation between system and unit input data as a function. Using
this function, we generate system inputs that enter the program, reach
vulnerable instructions in the desired test unit, and cause heap over-
flow in those instructions. This method is implemented as a plugin for
angr framework and evaluated using a group of benchmark programs.
The experiments show its superiority over similar tools in accuracy and
performance.

Keywords: Unit testing - Symbolic execution - Executable codes -
Heap overflow - Machine learning

1 Introduction

A wide variety of program analysis and vulnerability detection techniques have
been introduced in the past decades, among which symbolic execution has
attracted a great deal of attention [10]. Although symbolic execution is theo-
retically sound and complete [4], it may run into challenges in analyzing real-
world programs, such as path explosion. Here, the number of program execution

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Kovéacs and K. Meinke (Eds.): TAP 2022, LNCS 13361, pp. 89-105, 2022.
https://doi.org/10.1007/978-3-031-09827-7_6

90 M. Mouzarani et al.

paths may grow exponentially, making storing and exploring the program paths
impractical. Some solutions have been proposed to overcome this challenge such
as pruning infeasible paths [20], function and loop summarization [13,14], state
merging [13,15], and compiler optimizations [12].

Some researchers have applied machine learning methods to improve sym-
bolic execution and contain path explosion [6-9,11,19]. For instance, in [11],
symbolic execution is simply applied to a given program unit rather than the
entire program to limit the scope of symbolic analysis and avoid path explosion.
In this method, symbolic execution is used to analyze the constraints of execution
paths in the unit and calculate appropriate unit input data covering all paths
in the test unit. Then, the curve fitting technique [3] is employed to approxi-
mate the relationship between system inputs and the given test unit input data.
Finally, system inputs are generated that are correlated to the calculated unit
input data. This method is not used to detect a specific class of vulnerability,
and it does not contain details on how to determine the test units in a program.

This paper extends the idea presented in [11] and proposes a method for
detecting heap overflow vulnerability in executable codes. Our method clearly
defines how to automatically determine test units in executable code according
to our specification of heap overflow vulnerability. We apply symbolic execution
to each unit and, given the specification of heap overflow vulnerability, calculate
path and vulnerability constraints in each execution path of the unit. We gener-
ate unit input data to explore a test unit, reach the vulnerable statements, and
cause heap overflow by solving the calculated constraints. Similar to the method
in [11], we estimate the relationship between the program input data and that
of the test unit by simulating the program execution and using machine learning
techniques. In this way, we generate test data that enters into the program from
the beginning and activates vulnerability in the desired instruction of the test
unit.

Our method has been implemented as a plugin for angr framework [23] and is
available in [1]. We have evaluated the performance and accuracy of our method
using NIST SARD benchmark vulnerable programs [2] and a designed complex
program, presented in Listing 2, that contains more functions and more compli-
cated path constraints compared to the benchmark programs. Our solution has
been compared with two similar heap overflow detection tools named MACKE
[18] and Driller [21]. The experiments show that our method performs more effi-
ciently and accurately than these tools for detecting heap overflow vulnerability.

To summarize, our contributions are as follows:

— Specifying heap overflow vulnerability in executable codes and presenting a
method to automatically determine test units in a program accordingly

— Revising the testing algorithm presented in [11] to focus on detecting heap
overflow vulnerability more efficiently

— Implementing and evaluating the total solution to demonstrate the advan-
tages of unit-based symbolic execution against similar methods for detecting
heap overflow vulnerability

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 91

Input

Symbolic Execution :‘Combining Path Constraintsé
o I [TR S L PR PP ORRRRRRY : and Vuln. Constraints 3

Vuln COnStralntS Monte Car|0 ¢
Unit Extraction Extraction v Simulation et
B - : _ : = . No :
7 Basedon 4 > Path Cons_tralnts —> TAR:_’; Treatm(_ent N « Satisfiable? “—> End
CH) : Extraction : ¢ Learning Algorithm " —
| eap Overflow e eereee s osees oot semame s reeremerees : : -
Specification -)]) . Yes
el i Unit Tree Extraction . Function Fitting JRRSUURORRINN osts N .
e et e e e T .. Generating Test Data
and Reporting Vulnerability :
L)) L) e)
1. Static Analysis 2. Test Unit Processing 3. Learning & Simulation 4. Test Data Generation

Fig. 1. Architecture of the proposed method

The remainder of this paper is structured as follows: In Sect. 2, the proposed
method is described in detail. Section 3 evaluates the implemented method, and
finally, Sect. 4 concludes the paper and presents some future works.

2 Method Overview

Our proposed method consists of four major phases, as illustrated in Fig. 1. In
the first phase, the program executable code is statically analyzed to identify
test units based on the specification of heap overflow vulnerability. To make the
process clearer, Fig. 2 illustrates a program containing various possibly vulner-
able units for which we explain the steps of our proposed solution briefly. Our
method recognizes the test unit, shown in black, statically according to the spec-
ification of heap overflow vulnerability. In fact, we are interested in finding unit
input data 75 and its relevant system input data I that causes heap overflow in
the unit. In the second phase, we analyze all execution paths in the unit through
symbolic execution and consider the rest of the program as a black box. More
precisely, we perform symbolic execution in this phase and create a constraint
tree for the extracted unit that contains path and vulnerability constraints on
unit input data for each possibly vulnerable statement. In the third phase, Monte
Carlo simulation is performed, and the whole program is executed with multiple
system input values. If system input I reaches the test unit with input value
1 and causes the execution of a node n in the unit tree, we annotate node n
with the pair (Ij,i;) to record which input data causes executing that node.
Then, for each possibly vulnerable node in the unit tree, we use function fitting
technique [22] to estimate the relation between system and unit input data as a
function. Finally, in the fourth phase, we use the calculated path and vulnera-
bility constraints and the estimated function to generate system input data that
enters the program, reaches the test unit, and causes heap overflow in vulnerable
statements. In the following, we explain each phase in more detail.

92 M. Mouzarani et al.

Unit Input (ig)

System Input (/) Cf& E
— 00©

Unit Tree

Unit Test Unit - Data FIow/\)

Fig. 2. Schematic of a program as a system containing a vulnerable unit with an input
i having a relevant system input I obtained from curve fitting and treatment learning

2.1 Static Analysis

In the first phase, we analyze the program executable code statically and search
for functions that might contain heap overflow vulnerability. To locate possi-
bly vulnerable statements in executable code, we first specify how heap overflow
vulnerability appears. We use the general vulnerability specification method pre-
sented in [17] to describe vulnerabilities as a sequence of pairs { CONT, Rule}
that specify the data concerned in a vulnerability and the conditions on it for
the vulnerability activation, respectively. We describe heap overflow using this
method and based on VEX language since our proposed solution is implemented
as a plugin for angr, that translates binary instructions into VEX intermediate
language. Figure 3 presents our specification of heap overflow as a multi-event
vulnerability.

This specification consists of two events: allocating a heap buffer and storing
some data into that buffer. Actually, the symbol > represents the sequence of
two events. In this specification, the following containers are considered:

— CONT1: address of the allocated heap memory (the address returned from
the malloc function)

— CONT?2: length of the allocated heap memory (the input argument of the
malloc function which is assumed to be a constant value)

— CONT3: address on which arbitrary data is stored using a store instruction

— CONT4: data stored using a store instruction

According to the Rule illustrated in the second part of the specification, this
vulnerability occurs when some data is stored in a heap buffer using the Ist_Store
VEX instruction. The source and destination of the store operation are defined
in the Ist_Store.data.tmp and Ist_Store.addr sections of this VEX instruction,
respectively. If length of the source data is more than size of the destination heap
buffer, or if length(CONT4) is greater than CONT2, then heap overflow occurs.
According to this specification, we identify allocated heap buffers (CONT1) in

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 93

{CONT1,CONT2},True) > ({CONT3,CONT4}, Rule)

1. CONT1 = malloc(CONT?2)
2. CONT3 = Ist_Store.addr
3. CONT4 = Ist_Store.data.tmp

Rule :
CONT1 < CONT3 < CONT1+CONT?2
and
len(CONT4) > CONT?2

Fig. 3. Our specification of heap overflow vulnerability in VEX language

executable codes and search for functions in which some data is stored in these
buffers. Such functions are considered as test units. It is worth mentioning that
since the address of a heap buffer is dynamically determined at run time, we use
the local variable that stores the address of the allocated heap buffer. Since this
variable is located in the stack memory, we use it to follow the usage of that
buffer through the program statements and functions. One of our challenges
in recognizing test units in executable codes is following the usage of the heap
buffer in nested function calls. Under such circumstances, the heap buffer address
may be sent to other functions as an argument. To overcome this challenge, we
use calling conventions to follow the local variable holding address of the heap
buffer, which is passed to other functions or returned from function calls. We
also assume that the length of the allocated heap buffer in the malloc function
is a constant value, and it is available during static analysis.

2.2 Processing the Test Units

In this phase, symbolic execution is applied to each unit after determining the
test units using static analysis, and a constraint tree is extracted. In this tree,
each node is annotated with metadata obtained from symbolic execution that
shows the system state at that point of the program. This metadata contains
the path constraints from the beginning of the test unit to the given node, the
node constraints, and the vulnerability constraints in that node. Vulnerability
constraints are calculated based on the length of the heap buffer for nodes in
which some data is stored into a heap buffer. These constraints are according to
the vulnerability specification in Fig. 3.

2.3 Learning and Simulation Process

After extracting the constraint tree, the program execution is simulated, and its
behavior is learned in the third phase of our solution. Details of the operations
in this phase are presented in Algorithm 1. This algorithm is a revised version of

94 M. Mouzarani et al.

Algorithm 1. Cover(S,U,T)

Input: System S with inputs I with d = |I|, unit U with inputs ¢ and constraint tree
T obtained from applying symbolic execution to the unit U

1: Perform n-factor combinatorial MC simulation over space R?
2: (V,v) < {(a,b)| a is a system level vector and b is the corresponding monitored
unit level vector}

3: for node n in T using BFS do

4: if n is in a possibly vulnerable path then

o: if n and n’siblings are covered then

6: V'—{a € V|acover n} and V" «— V\V’

7 (In, Ry, -) < RunTar3(I,V, V', V")

8: Vj € I, store the range r; € R, for j

9: else if n is satisfiable but not covered then
10: ¢ <+ model for Const(n)
11: C — Term(n)
12: (In,in, fn) < ComputeMap(C, V,v,n, Parent(n),1)
13: end if
14: end if
15: end for

16: for node n in T that n is possibly vulnerable and satisfiable do
17: if n is covered then

18: Generate input using Const(n), VulConst(n) and Vj € I\I, use r; € R,
19: else

20: Generate input using Const(n), VulConst(n) and f,

21: end if

22: end for

the Cover algorithm presented in [11], and our modifications are shown in blue.
In this algorithm, the terms T'erm(n), Const(n), and VulConst(n) refer to the
node constraints, the path constraints from the beginning of the test unit to the
given node n, and the vulnerability constraints of node n, respectively.

In this algorithm, first in lines 1 and 2, we perform n-factor Monte Carlo
simulation on the program and generate possible combinations of input data.
We execute the program with these inputs and monitor it to annotate nodes
of the unit tree with the system and unit data pairs (Ig,i;) that reach the
aforementioned nodes during the program execution.

Next, in lines 3 and 4, we explore the constraint tree and analyze only nodes
located in a possibly vulnerable path, a path from the root to a leaf in the
constraint tree that contains some nodes in which a store operation to a heap
buffer is performed. In contrast to the algorithm in [11], which processes all
nodes in the constraint tree at this step, we limit our analysis to a group of
nodes according to the vulnerability specification to improve the efficiency of
our method. In lines 5 to 8, we check if these nodes and their siblings have
been executed during the simulation, then we use TARS treatment learning
algorithm [16] to estimate the range of system inputs that could explore the
desired node in the unit. Otherwise, in lines 9 to 12, for each uncovered node

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 95

whose path constraints are satisfiable, a function named ComputeMap is called
that estimates the relation between system and unit input data as a function f.
The algorithm of this function is presented in Algorithm 2. By solving the path
constraints of the node, we generate a unit input data that reaches the node. We
give this data to the function f, and it returns appropriate system input that
could explore the desired node in the unit tree during the execution.

2.4 Test Data Generation

Until now, we have only considered path constraints in generating system input
data. In lines 16 to 22 of Algorithm 1, for each node containing a possibly
vulnerable statement whose path constraints are satisfiable, we try to generate
system input data consistent with both path and its calculated vulnerability
constraints. To do so, in lines 17 and 18, for each node that has been covered
in the simulation step, we solve the path and vulnerability constraints of the
node and generate appropriate unit input data to cause overflow in that node.
In the last step, using the range of system inputs (r; € R,,) calculated by TARS
algorithm, we find relevant system input data for the desired unit input data.

Next, in lines 19 and 20, for each node that has not been covered in the
simulation step, we use the fitted function f to find relevant system input data for
the unit input data consistent with calculated path and vulnerability constraints.

To summarize the difference between our Cover algorithm and the one pre-
sented in [11], first in line 4, we improve the performance of our analysis by only
considering nodes in potentially vulnerable paths, while in [11], all the nodes are
analyzed in this step even though they might not contain any vulnerability. Next,
we calculate both path and vulnerability constraints, and this is statically per-
formed using symbolic execution. However, the algorithm in [11] only considers
the path constraints calculated gradually using dynamic symbolic execution by
generating new input data that explores uncovered paths in the unit. Thus, we
calculate the constraints more quickly. Since our symbolic analysis is restricted
to a single function, dynamic symbolic execution accuracy and coverage advan-
tages over symbolic execution are not significant here. Finally, we consider the
path and vulnerability constraints in lines 16 to 22 for generating system input
data that reaches the vulnerable nodes and causes heap overflow. In contrast,
the algorithm in [11] only considers the path constraints for generating system
input data that covers the nodes of the unit.

ComputeMap Algorithm. We have used the same algorithm, shown in
Algorithm 2, as introduced in [11] for the ComputeMap function. We describe
this algorithm here to make the whole process clear for the reader. Due to the
complexity of applying curve fitting to a large set of data and the presence of a
large number of parameters, the algorithm fits the program behavior into a func-
tion by initially considering the constraints of each node (T'erm(n)) individually.
Thus, the unit input variables related to the node constraints and the constraints
applied to each variable are first extracted. Based on these variables, a subset

96 M. Mouzarani et al.

Algorithm 2. ComputeMap(C, I,V,v,n,n’ 1)
Input: Constraint C, System vectors V', Unit vectors v, a node n that we want to

cover, a node n’ that is in the parent hierarchy of n and a model % for Const(n)
Output: (I, in, fn) where i,, = Vars(C) and I, = f(in)

1: ip = Vars(C)
2: 1, = restriction of % to i,
3: V'« {a € V] aisin 20% of points closet to Const(n)} and V" «— V\V’
4: (I, Ry, Smooth) <« RunTar3(I,V, V' V")
5: if Smooth then
6: Build map I,, = f(in) > curve fitting step
7: else
8: if n’ exists then
9: C «— C ANTerm(n")
10: (In,in, fn) < ComputeMap(C, I, V,v,n, Parent(n'),1)
11: else
12: n"” «—n
13: while Parent(n’) exists do
14: C «— C A Term(Parent(n”
15: n” < Parent(n")
16: V'~ {a € V| a cover n”
17: if |V'| > Threshold then
18: break
19: end if
20: end while
21: V" — V\V’
22: (I, Ry,) < RunTar3(I,V,V' V")
23: in = Vars(C)
24: Build map I,, = f(in) > curve fitting step
25: end if
26: end if

of unit inputs for which there are path constraints is extracted. Then, the path
constraints associated with these inputs are calculated. In the next step, the first
20% of system inputs that are more compatible with this constraints subset are
selected as a set V'. Afterward, TARS3 algorithm is applied to the set, and if a
smooth! relationship is established there between, the function f is built using
curve fitting. Otherwise, the process is repeated recursively by adding parent
node constraints to the given node in order to establish a smooth relationship.

If a smooth relationship is not found by including all terms in Const(n), in
lines 11 to 24 we walk up through the unit tree to find a parent node with enough
system input values in its annotation. Such node is covered in the simulation step
with appropriate number of input data ([, i) that helps to better estimate the
function f using the curve fitting algorithm.

! The smoothness of a function is a stronger case than the continuity of the function.
A smooth function is a function having continuous derivatives up to a specific order.

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 97

3 Evaluation

The proposed method has been implemented as a plugin for angr, a symbolic
execution framework for binary analysis [23]. In our implementation, string data
type is also supported for detecting heap overflow in string manipulation func-
tions in addition to int, short, unsigned int, char, float, double, and enum data
types supported in the proposed approach in [11].

We have designed two experiments to evaluate our solution; in the first exper-
iment, a set of 90 programs from NIST SARD benchmark [2] containing heap
overflow vulnerability has been used. The vulnerability occurs in these programs
when some constant data is copied into a heap buffer using strepy, strcat, mem-
cpy, and memmove functions. More precisely, out of 90 test programs, 15 pro-
grams have the vulnerability in calling strcpy function, 15 programs in calling
strcat, 30 programs in calling memcpy, and 30 programs in calling memmowve.
To better evaluate our proposed method, we have made the path constraints in
the test programs more complicated by adding an additional if statement to
the vulnerable paths. In addition, instead of copying constant data into a heap
buffer, we have copied an input variable into that buffer to create a vulnerability
constraint in the test unit. A vulnerable function in one of these benchmark
programs is presented in Listing 1 as an example, and our added if statement
is underlined in line 16. The same if statement has been similarly added to all
benchmark programs. In the second experiment, we have created a test program
with several functions and more complicated path and vulnerability constraints
to better evaluate the efficiency of our method. The source code of this program,
along with its details, is presented in Listing 2.

In both experiments, we have compared our implemented solution with two
other tools that use the similar method for detecting vulnerabilities in C pro-
grams, namely MACKE [18] and Driller [21].

Driller is a fuzzing tool that uses evolutionary algorithms to generate multiple
input values from an initial seed and explore the program paths. If the process
is trapped in a part of the program because of a conditional statement and
the fuzzer fails to generate consistent input values for that condition, symbolic
execution is applied to calculate the constraint and generate appropriate data.
Then, the fuzzer generates input data based on the obtained data from symbolic
execution to detect more in-depth vulnerabilities. Our proposed method is com-
pared with this tool as it applies symbolic execution and uses angr framework to
improve the coverage of program analysis. Driller is also among the most popu-
lar vulnerability detection tools, given its satisfactory performance in detecting
vulnerabilities [21].

MACKE is a framework written on top of the KLEE symbolic execution
engine [5] for compositional analysis of C programs [18]. In this framework, the
program is divided into different units, and symbolic execution is performed for
detecting vulnerabilities in each unit. It recognizes each function through static
analysis and considers it as a test unit. MACKE also analyzes the call graph
and the program control flow graph statically to identify possible function call
scenarios. This way determines whether a function containing vulnerable state-

98 M. Mouzarani et al.

1 // Filename: CWE122_Heap_Based_Buffer_Overflow__c_CWE193_char_cpy_34.c
2 void CWE122_Heap_Based_Buffer_Overflow_char_cpy_34_bad(char * source)
3 {

4 char * data; = NULL;

5) struct fp * ptr = NULL;

6 CWE122_Heap_Based_Buffer_Overflow_char_cpy_34_unionType myUnion;

(// FLAW: Did not allocate space based on the source length

8 data = (char *)malloc(20*sizeof (char));

9 if (data == NULL) { exit(-1); }

1(ptr = (struct fp *)malloc(sizeof (struct fp));

11 if (ptr == NULL) { exit(-1); }

12 myUnion.unionFirst = data;

13 {

14 char * data = myUnion.unionSecond;

15 ptr->fptr = printLine;

16 if (source[0] == ’7’ && source[l] == ’/’ && source[2] == ’4’
&& source[3] == ’2’ && source[4] == ’a’ &% source[5] == ’8’
&& source[75] == ’a’)

17 {

18 /* POTENTIAL FLAW:

19 data may not have enough space to hold source */

20 strcpy(data, source);

21 +

22 ptr->fptr("That’s OK!");

23 printLine(data) ;

24 free(data);

25 free(ptr);

26 }

27}

Listing 1. A sample vulnerable unit in benchmark programs

ments may be executed in a sequence of possible function calls. After performing
symbolic execution in each test unit and calculating appropriate input data that
reveals vulnerabilities in the unit, the tool reports possible vulnerabilities in each
unit with the relevant unit inputs as the proof of concept. Since MACKE does
not consider the constraints of the path from the beginning of the program to
the test unit, it may generate several false positives in this step. Therefore, the
last analysis step removes alarms related to the units recognized as unreach-
able during the static analysis. However, since this analysis is only based on the
possible function call scenarios, our evaluations demonstrate false positive and
negative alarms in MACKE outputs regardless of the path constraints.

3.1 Experiment 1

Table 1 shows the results of our first experiment for testing NIST SARD bench-
mark programs. The columns in this table represent, from left to right, the
number of true positives (TP), true negatives (TN), false positives (FP), false
negatives (FN), and the accuracy metric which is calculated as shown in (1).

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 99

Table 1. The results of evaluating the approaches on the benchmark programs

Tool TP | TN | FP | FN | Accuracy
Driller 90 116 /0 |0 |1.00
MACKE 54 108 |8 36 |0.78
Our method |90 116 0 |0 |1.00

TP+TN
TP+TN+ FP+ FN

Accuracy = (1)

Each test program in NIST SARD contains a vulnerable statement in a
function whose name contains the word “bad” and one or two functions whose
names contain the word “good” that use similar statements without vulnerabili-
ties. Thus, a precise tool is expected to have one true positive alarm and one or
two true negative alarms for each test program. As shown in Table 1, our tool
and Driller could precisely detect all vulnerabilities in the test programs with no
false alarms. However, MACKE had 8 false positive and 36 false negative alarms
in analyzing the benchmark programs.

We have also compared the execution time of the tools in this experiment, as
shown in Fig. 4. This figure shows the average analysis time that each tool has
spent on the test programs with a vulnerable function, e.g., strepy, memcepy, etc.
As observed, the performance of our proposed method has significant superior-
ity over the Driller’s. Although the analysis time of MACKE in this experiment
has been less than that of our tool, it has generated more false alarms and less
accurate results. Additionally, MACKE only generates local input data for exe-
cuting a single unit and does not consider the path constraints on system input
data for reaching the beginning of a test unit. On the contrary, our proposed
method generates accurate test data for executing the whole program from the
beginning and reaching the vulnerable statement in the test unit. This might be
one reason that testing and analyzing a program takes more time in our method.

3.2 Experiment 2

In the second experiment, we have analyzed our designed test program with six
vulnerable statements, presented in Listing 2, using all three tools. The designed
complex program is a simple authentication code by which the user can carry
out the sign-up and sign-in operations. The user should run the program and
enter the username and password in the console to sign-up. If the condition
in line 115 is satisfied, the vulnerable function signup would be called. In this
function, two heap buffers are allocated in lines 9 and 11. As there are two
copy operations with memcpy function calls in lines 14 and 17, this function is
identified as a test unit by our solution. There is a path constraint, in line 6, in
this function, therefore if the input strings for username and password satisfy
the path constraints in lines 115 and 6, and the length of them be more than
the length of the destination heap buffers in the copy operations, they would

100 M. Mouzarani et al.

600

467

473
354 366
200
37 s 38 43
25 25 16 14
0 |:||:I|:||:I|:||:| =

STRCPY STRCAT MEMCPY MEMMOVE

o Our Method IR Driller [0 MACKE

[IhN
o
@)

Execution Time (s)

Fig. 4. Comparison of tools analysis time on the benchmark programs

cause heap overflow. Note that the path constraint in line 115 is out of the
test unit and should be recognized through machine learning. Our implemented
solution calculates the path constraint in line 6 using symbolic execution since
this constraint is inside the unit. Then, it generates appropriate input data for
the scanf operations in lines 113 and 114, consistent with both path constraints
inside and outside the unit. There are two other test units in this program,
check and authentication functions, that cause heap overflow by calling strcpy
and memcpy functions respectively. The same challenge exists in these functions
for our solution to calculate the path constraints inside the test unit and estimate
the ones outside of it.

The results of this experiment are demonstrated in Table 2. As shown in
this table, MACKE could detect only one of these vulnerabilities in the given
program as it seems that could not analyze complicated path conditions. Driller
could detect four vulnerabilities in the test program, and it has generated two
false negative alarms. In contrast, our tool has detected all six vulnerabilities
precisely. It has generated appropriate test data for the whole program that
enters the program from the beginning and causes heap overflow in the vulnerable
statements of the test units. Besides, the testing time in our tool has been much
less than that of Driller. Therefore, the results of this experiment demonstrate
the advantage of restricting the scope of symbolic execution for detecting a
specific vulnerability class.

Table 2. The results of evaluating the approaches on the complex test program

Tool TP | TN |FP | FN | Time(s)
Driller 4 |0 |0 |2 |3549
MACKE 1 0 |0 |5 335
Our method |6 |0 |0 |0 374

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 101

1 #define def_user "admin"

2 #define def_pass "password"

3 // The function "signup" as a vulnerable unit
4 void signup(char #*username, char *password)

5 {
6 if ((username[1] >= ’0’ && username[1l] <= ’9’)
&& !'strncmp(password, "passWOrd", 8))
7 {
8 // FLAW: Did not allocate space based on the username length
9 char *tmp_user = (char *)(malloc(50*sizeof (char)));
10 // FLAW: Did not allocate space based on the password length
11 char *tmp_pass = (char *)(malloc(50*sizeof (char)));
12 /* POTENTIAL FLAW:
13 data may not have enough space to hold source */
14 memcpy (tmp_user, username, strlen(username));
15 /* POTENTIAL FLAW:
16 data may not have enough space to hold source */
17 memcpy (tmp_pass, password, strlen(password));
18 if (strlen(tmp_pass) < 12)
19 {
20 printf ("The selected password is too weak\n");
21 return;
22 }
23 int fd = open(tmp_user, O_WRONLY|O_CREAT, 0777);
24 if (fd < 0)
25 {
26 printf("An unexpected problem occurred!\n");
27 return;
28 }
29 write(fd,tmp_pass, sizeof (tmp_pass));
30 printf ("%s your registration was successful\n", tmp_user);
31 }
32 else if (! (username[1] >= ’0’ && username[1l] <= ’9’))
33 printf ("The second letter of username must be a number\n");
34 else
35 printf ("The password must start with the word <passWOrd>\n");
36 }

37 // The function "check" as a vulnerable unit
38 bool check(char *username, char *password)

39 {
40 // FLAW: Did not allocate space based on the username length
41 char *tmp_user = (char *)(malloc(50*sizeof (char)));

42 // FLAW: Did not allocate space based on the password length
43 char *tmp_pass = (char *)(malloc(50*sizeof (char)));
44 if ((username[0] >= ’A’ && username[0] <= ’Z’)

&& (username[1] >= ’0’ && username[1] <= ’9’))

45 {

46 /* POTENTIAL FLAW:

47 data may not have enough space to hold source */
48 strcpy(tmp_user, username);

49 /* POTENTIAL FLAW:

50 data may not have enough space to hold source */

51 strcpy(tmp_pass, password);

102 M. Mouzarani et al.

52 if (!strcmp(tmp_user, def_user) && !strcmp(tmp_pass, def_pass))
53 return true;

54 char passwd[50];

55 int fd = open(tmp_user, O_RDONLY);

56 if (fd < 0)

o7 {

58 printf ("An unexpected problem occurred!\n");
59 return false;

60 }

61 read(fd, passwd, sizeof(passwd));

62 if (!strcmp(passwd, tmp_pass)) { return true; }
63 }

64 return false;

65 F

66 // The function "signin" without any vulnerable statement
67 bool signin(char *username, char *password)

68 {

69 if (check(username, password))

70 {

71 printf("%s you logged in successfully\n", username);
72 return true;

73 }

74 else

75 {

76 printf ("The username or password is wrong\n");
77 return false;

78 }

79 }

80 // The function "authentication" as a vulnerable unit

81 void authentication(char *username, char *password)

82 A{

83 // FLAW: Did not allocate space based on the username length
84 char *tmp_user = (char *)(malloc(80*(sizeof(char))));

85 // FLAW: Did not allocate space based on the password length
86 char *tmp_pass = (char *)(malloc(80*(sizeof(char))));

87 /* POTENTIAL FLAW:

88 data may not have enough space to hold source */
&9 memcpy (tmp_user, username, strlen(username));

90 /* POTENTIAL FLAW:

91 data may not have enough space to hold source */
92 memcpy (tmp_pass, password, strlen(password));

93 int loginCnt = 0;
94 for(; loginCnt < 3; loginCnt++)

95 {

96 bool signin_res = signin(tmp_user, tmp_pass);

97 if(signin_res) { break; }

98 printf ("The username or password is invalid, try again :");
99 printf (" (%d from %d)\n", (loginCnt+1),3);

100 printf ("Enter username : "); scanf("%s",tmp_user);

101 printf ("Enter password : "); scanf("%s",tmp_pass);

102 }

103 if(loginCnt == 3) { printf("Please try later\n"); }
104 }

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 103

105 int main (int argc, char xargv[])

106 {
107 char *username = (char *)(malloc(100*(sizeof(char))));
108 char *password = (char *)(malloc(100*(sizeof (char))));
109 if(argc >= 3) { authentication(argv[1], argv[2]); }
110 else
111 {
112 printf ("Register new user\n");
113 printf ("Enter username :"); scanf("%s", username);
114 printf ("Enter password :"); scanf("%s", password);
115 if (username[0] >= ’A’ && username[0] <= ’Z’)
116 signup(username, password);
117 else
118 printf ("The selected username is not valid,

it must start with an uppercase letter");
119 }

120 }

Listing 2. Source code of the designed complex program

4 Conclusion and Future Works

While symbolic execution is sound and complete in theory, this method faces
challenges in testing real-world programs, such as path explosion. The number
of symbolic execution states may be exponential, and the whole program may
not be analyzed thoroughly.

We proposed a method for applying symbolic execution technique to detect
heap overflow vulnerability in executable codes. In this method, we limit the
scope of symbolic execution to the test units. We also presented a method for
determining the test units in the program according to the specification of heap
overflow vulnerability in executable codes. In this method, we generate appro-
priate unit input data for detecting heap overflow according to the path and
vulnerability constraints in vulnerable statements of the test unit. Then, we use
machine learning techniques to estimate the relation between system and unit
input data as a function and find consistent system input data that enters into
the program from the beginning, causes execution of vulnerable statements in
the test unit, and reveals heap overflow vulnerability. The experiments showed
that this method achieves more efficient and accurate results in detecting vul-
nerabilities in complex programs compared to similar tools.

In the future, we are going to extend our solution to detect other vulnerability
classes in executable codes, such as stack-based buffer overflow, use after free,
and double free. We have to specify these vulnerabilities so that the implemented
solution can automatically identify test units based on them. We also have to
revise the Cover algorithm to calculate the vulnerability constraints based on
the specified vulnerabilities and generate appropriate test data to detect them
in the programs. Additionally, we are going to study other machine learning
techniques for estimating the program behavior to improve the efficiency of the
ComputeMap algorithm.

104

M. Mouzarani et al.

References

10.

11.

12.

13.

14.

. Heap Overflow Detection Tool. https://github.com/SoftwareSecurityLab/Heap-

Overflow-Detection

National Institute of Standards and Technology in Software Assurance Reference
Dataset Project. https://samate.nist.gov/SRD. Accessed 4 Mar 2022

Arlinghaus, S.L., Arlinghaus, W.C., Drake, W.D., Nystuen, J.D.: Practical Hand-
book of Curve Fitting (1994)

Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3) (2018). https://doi.
org/10.1145/3182657

Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209-224. USENIX Association (2008). https://doi.org/10.5555/1855741.
1855756

Cha, S., Hong, S., Bak, J., Kim, J., Lee, J., Oh, H.: Enhancing dynamic symbolic
execution by automatically learning search heuristics. IEEE Trans. Softw. Engi., 1
(2021). https://doi.org/10.1109/TSE.2021.3101870

Cha, S., Lee, S., Oh, H.: Template-guided concolic testing via online learning, pp.
408-418. Association for Computing Machinery, New York (2018). https://doi.org/
10.1145/3238147.3238227

Cha, S., Oh, H.: Concolic testing with adaptively changing search heuristics. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2019, pp. 235-245. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3338906.3338964

Chen, J., Hu, W., Zhang, L., Hao, D., Khurshid, S., Zhang, L.: Learning to accel-
erate symbolic execution via code transformation. In: Millstein, T. (ed.) 32nd
European Conference on Object-Oriented Programming (ECOOP 2018). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 109, pp. 6:1-6:27. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.
4230/LIPIcs. ECOOP.2018.6

Chen, T., Zhang, X.S., Guo, S.Z., Li, H.Y., Wu, Y.: State of the art: dynamic
symbolic execution for automated test generation. Future Gener. Comput. Syst.
29(7), 1758-1773 (2013). https://doi.org/10.1016/j.future.2012.02.006

Davies, M., Pasareanu, C.S., Raman, V.: Symbolic execution enhanced system
testing. In: Joshi, R., Miiller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol.
7152, pp. 294-309. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27705-4_23

Dong, S., Olivo, O., Zhang, L., Khurshid, S.: Studying the influence of standard
compiler optimizations on symbolic execution. In: 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp. 205-215 (2015).
https://doi.org/10.1109/ISSRE.2015.7381814

Godefroid, P.: Compositional dynamic test generation. SIGPLAN Not. 42(1), 47—
54 (2007). https://doi.org/10.1145/1190215.1190226

Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic test
generation. In: Proceedings of the 2011 International Symposium on Software Test-
ing and Analysis, ISSTA 2011, pp. 23-33. Association for Computing Machinery,
New York (2011). https://doi.org/10.1145/2001420.2001424

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Unit-Based Symbolic Execution Method for Detecting Heap Overflow 105

Hansen, T., Schachte, P., Sgndergaard, H.: State joining and splitting for the sym-
bolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 76-92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04694-0_6

Menzies, T., Hu, Y.: Data mining for very busy people. Computer 36(11), 22-29
(2003). https://doi.org/10.1109/MC.2003.1244531

Mouzarani, M., Sadeghiyan, B.: Towards designing an extendable vulnerability
detection method for executable codes. Inf. Softw. Technol. 80, 231-244 (2016).
https://doi.org/10.1016/j.infsof.2016.09.004

Ognawala, S., Ochoa, M., Pretschner, A., Limmer, T.: MACKE: compositional
analysis of low-level vulnerabilities with symbolic execution. In: Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, pp. 780-785. Association for Computing Machinery, New York (2016).
https://doi.org/10.1145/2970276.2970281

Pasareanu, C.S., et al.: Combining unit-level symbolic execution and system-level
concrete execution for testing Nasa software, ISSTA 2008, pp. 15—-26. Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1390630.
1390635

Schwartz-Narbonne, D., Schaf, M., Jovanovié¢, D., Riimmer, P.; Wies, T.: Conflict-
directed graph coverage. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 327-342. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-17524-9_23

Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: In: NDSS (2016). https://doi.org/10.14722/ndss.2016.23368

Strang, G.: Linear Algebra and Its Applications. Thomson, Brooks/Cole, Bel-
mont (2006). http://www.amazon.com/Linear- Algebra-Its- Applications- Edition/
dp/0030105676

Wang, F., Shoshitaishvili, Y.: Angr - the next generation of binary analysis. In:
2017 IEEE Cybersecurity Development (SecDev), pp. 89 (2017). https://doi.org/
10.1109/SecDev.2017.14

https://www.researchgate.net/publication/361464569

	BIOGRAPHIC INFORMATION
	PROFILE
	BIRTH INFORMATION
	CONTACT INFORMATION
	CITIZENSHIP STATUS AND RESIDENCY INFORMATION
	RACE/ETHNICITY
	OTHER INFORMATION

	ACADEMIC HISTORY
	HIGH SCHOOL ATTENDED
	STANDARDIZED TESTS
	COLLEGES ATTENDED
	GPA BY TRANSCRIPT

	SUPPORTING INFORMATION
	EXPERIENCE
	Internship
	Research
	Research
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience
	Teaching Experience

	MEMBERSHIPS
	ACHIEVEMENTS
	CONFERENCES ATTENDED
	DOCUMENTS
	4. Passport Copy (for international students only)
	1. CV/Resume

	CUSTOM QUESTIONS
	EUROPEAN UNION DATA PROTECTION
	EDUCATIONAL GAP
	GENDER
	PRONOUNS
	USC BACKGROUND INFORMATION
	USC CERTIFICATION AND AUTHORIZATION
	MARITAL STATUS
	SEVIS INFORMATION
	ADDITIONAL VISA INFORMATION
	FINANCIAL AID, AWARDS AND FELLOWSHIPS

	DESIGNATIONS
	COMPUTER SCIENCE (PHD)
	SUPPLEMENTAL QUESTIONS
	AREAS OF INTEREST
	FACULTY
	RESEARCH EXPERIENCE
	COMPUTER LANGUAGES

	REFERENCES
	Maryam Mouzarani
	Mohammad Reza Heidarpour
	Zeinab Zali

	DOCUMENTS
	Personal Statement
	Publication
	Publication

