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Abstract

Memory corruption is a serious class of software vulnerabilities,
which requires careful attention to be detected and removed from
applications before getting exploited and harming the system users.
Symbolic execution is a well-known method for analyzing programs
and detecting various vulnerabilities, e.g., memory corruption. Al-
though this method is sound and complete in theory, it faces some
challenges, such as path explosion, when applied to real-world com-
plex programs. In this paper, we present a method for improving
the efficiency of symbolic execution and detecting four classes of
memory corruption vulnerabilities in executable codes, i.e., heap-
based buffer overflow, stack-based buffer overflow, use-after-free,
and double-free. We perform symbolic execution only on test units
rather than the whole program to lower the chance of path explo-
sion. In our method, test units are considered parts of the program’s
code, which might contain vulnerable statements and are statically
identified based on the specifications of memory corruption vulner-
abilities. Then, each test unit is symbolically executed to calculate
path and vulnerability constraints of each statement of the unit,
which determine the conditions on unit input data for executing
that statement or activating vulnerabilities in it, respectively. Solv-
ing these constraints gives us input values for the test unit, which
execute the desired statements and reveal vulnerabilities in them.
Finally, we use machine learning to approximate the correlation
between system and unit input data. Thereby, we generate system
inputs that enter the program, reach vulnerable instructions in the
desired test unit, and reveal vulnerabilities in them. This method
is implemented as a plugin for angr framework and evaluated us-
ing a group of benchmark programs. The experiments show its
superiority over similar tools in accuracy and performance.
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1 Introduction

Memory corruption vulnerabilities are prevalent and detrimental
software weaknesses, which potentially occur when programming
with low-level languages (usually C and C++). These vulnerabilities
allow attackers to access the program’s memory directly and read
from or write to it arbitrary values. Although low-level languages
provide few security guarantees [22], their flexibility and efficiency
encourage programmers to use them in developing critical software,
such as operating system kernels, drivers, and OS services. There-
fore, exploiting memory corruption vulnerabilities might seriously
harm the system owners.

A wide variety of program analysis and vulnerability detection
methods have been introduced over the past decades. Among them,
symbolic execution is a promising one, which systematically ex-
plores the program execution paths with high coverage. In this
method, input values are represented as symbols to calculate sym-
bolic constraints on input data for each execution path and generate
sufficiently diverse test data for analyzing a program’s possible be-
haviors [11]. Although symbolic execution is theoretically sound
and complete [4], it may run into challenges in analyzing real-world
programs. A well-known example of these challenges is path ex-
plosion that emerges since the number of program execution paths
grows exponentially, and it makes storing and exploring the paths
of large programs infeasible.

Some researchers have applied machine learning techniques
to improve symbolic execution and prevent path explosion [7-
10, 12, 21]. For instance, in [12], symbolic execution is applied to a
test unit rather than the entire program to limit the scope of sym-
bolic analysis and avoid path explosion. In the suggested method,
a combination of concrete and symbolic execution is applied to
calculate the constraints of execution paths in each test unit and
generate appropriate test data to explore these paths by solving
the calculated constraints. Then, curve fitting technique [3] is em-
ployed to approximate the correlation between system inputs and
the test unit inputs as a function. Using this function, new system
input data are generated to reach the test units and traverse vari-
ous execution paths in them. This method is not used to detect a
specific class of vulnerability and it does not contain details on how
to determine the test units in a program.

We extend the idea presented in [12] and our recent work [17] to
propose a method for detecting four classes of memory corruption
vulnerabilities in executable codes, i.e., heap-based buffer overflow,
stack-based buffer overflow, use-after-free, and double-free. We
present formal specifications for these vulnerability classes to be
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used to automatically locate test units in executable codes. Given
the specification of a vulnerability class, test units are symbolically
executed to calculate path and vulnerability constraints of the de-
sired execution paths in each test unit. Then, a set of unit input data
is generated by solving the calculated constraints to explore test
units, reach vulnerable statements, and activate their vulnerabilities.
Similar to the method in [12], we estimate the relationship between
the program and unit inputs by simulating the program execution
and using machine learning techniques. Thereby, we generate test
data that enter into the program from the beginning and reveal
vulnerabilities in the desired instructions of a test unit.

The proposed method is implemented as a plugin for angr [22],
which is a flexible, modular, and scalable binary analysis frame-
work, supporting a variety of architectures. We have named our
implemented method UbSym as it employs Unit-based Symbolic
execution for detecting vulnerabilities in executable codes. The
performance and accuracy of UbSym have been evaluated using a
group of NIST SARD benchmark vulnerable programs [1] and a
number of complex programs that contain more functions and more
complicated path constraints in comparison with the benchmark
programs. We have also compared UbSym with two tools, MACKE
[19] and Driller [23], which detect memory corruption vulnerabili-
ties with similar methods. The experimental results show that our
method performs more efficiently than these tools for detecting
such vulnerabilities. The source code of UbSym, including the test
cases and scripts to automatically reproduce test results, is publicly
available in our github repository [2].

In summary, this paper makes the following contributions:

o Specifying four vulnerability classes, i.e., stack-based buffer over-
flow, heap-based buffer overflow, double-free, and use-after-free,
in executable codes and presenting a method to automatically
determine test units for each vulnerability class in a program
accordingly.

o Revising the algorithm presented in [12] to calculate path and
vulnerability constraints based on our vulnerability specifications
and focus on detecting memory corruption vulnerabilities more
efficiently.

o Implementing and evaluating the total solution to demonstrate
the effectiveness of unit-based symbolic execution against similar
methods for detecting memory corruption vulnerabilities.

The remainder of this paper is structured as follows: Section 2
discusses some related work. In Section 3, the proposed method is
described in detail. Section 4 explains our experiments and evaluates
the implemented method. In Section 5, we mention some limitations
of the proposed method, and finally, Section 6 concludes the paper.

2 Related Work

In recent years, various methods have been proposed by the scien-
tific community to discover memory corruption vulnerabilities in
programs [5, 13-15, 19, 20, 23, 25]. However, most of these methods
have not been implemented to identify vulnerabilities in executable
codes and only use source codes [13, 19]. In many cases, executable
code analysis is the only possible way to prove or disprove prop-
erties of the code that is actually executed [22]. In addition, some
of these methods are only used to discover specific vulnerability
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classes [5, 14, 15]. For example, the authors in [5] only focus on diag-
nosing use-after-free and double-free vulnerabilities. Similarly, the
method presented in [14] only targets heap-based buffer overflow
vulnerability. When we come to use these methods for detecting
other vulnerability classes, significant changes to the implemented
algorithms are required.

Our method discovers vulnerabilities in executable codes, which
is much more accurate than analyzing the source code. Moreover,
by providing the corresponding specification of a new vulnerability
class, the presented method could be extended to explore test units
for that vulnerability class and detect possible vulnerabilities in a
program accordingly. In this section, we discuss some methods that
have been provided by researchers for detecting memory corruption
vulnerabilities.

In [13], the authors proposed a comprehensive vulnerability
detection approach for memory corruption vulnerabilities in pro-
grams written in C/C++. Their approach identifies unsafe opera-
tions, including both invalid memory writes and reads, in source
code by static analysis based on safety constraints, involving the
flow-sensitive point-to analysis and AST analysis on LLVM. The au-
thors evaluated their approach using publicly available benchmarks
and test suites. The experimental results showed an acceptable ac-
curacy of detection. However, this paper does not contain details
about the detection time, and the implemented approach is not
open source.

The S2EDroid presented in [25] uses selective symbolic execution
for detecting memory corruption vulnerabilities in Android binary
software. The authors first define the accession security rules for
stack and heap memory. Then using selective symbolic execution,
they check all the memory operations for all the execution paths
to determine whether an illegal memory accession exists.

In [23], the authors presented Driller as a vulnerability detec-
tion tool that combines dynamic fuzzing and concolic execution
to efficiently discover vulnerabilities in binary codes. Driller uses
evolutionary algorithms to generate multiple input values from an
initial seed and explore the program paths. If the process is trapped
in a part of the program because of a complex conditional state-
ment and the fuzzer fails to generate consistent input values for
that condition, selective symbolic execution is applied to calculate
the constraint and generate appropriate input data detecting more
in-depth vulnerabilities. Driller is also among the most popular
vulnerability detection tools, given its satisfactory performance in
detecting vulnerabilities.

In [19], MACKE is presented as a framework written on top of the
KLEE symbolic execution engine [6] for analysis of C programs and
detecting unhandled memory operations that result in memory out-
of bounds errors. MACKE first recognizes each function through
static analysis as a test unit. Then, it performs symbolic execution
on individual units, in isolation. Since MACKE does not consider
the constraints of the path from the beginning of the program to
the test units, it might generate several false positives in this step.
Therefore, it statically analyzes the call graph and the program’s
control flow graph to identify feasible function call scenarios and
omit the vulnerabilities that could not be exploited.

In Section 4, UbSym is compared with Driller and MACKE since
these open source tools employ similar techniques to improve the
coverage of analysis. Driller applies selective symbolic execution
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Figure 1: Architecture of the proposed method
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Figure 2: Schema of a program as a system containing a vul-
nerable unit with an input i; having a relevant system input
I obtained from curve fitting and treatment learning

and uses the angr framework when the fuzzer fails to go in depth.
MACKE also breaks the program into several units and separately
applies symbolic execution to each unit in order to enhance the
coverage of analysis.

3 Method Overview

Our proposed method is illustrated in Fig. 1. It consists of four
phases: test unit extraction, test unit processing, learning and sim-
ulation, and generating test data.

In the first phase, the program’s executable code is statically
analyzed to identify test units based on the specification of each
memory corruption vulnerability. To make the process clearer, Fig. 2
illustrates a program containing various units, which UbSym iden-
tifies its test units, shown in black, during the static analysis in the
first step. To dynamically detect vulnerabilities in such a program,
we are interested in finding an input data iy for a test unit and its
relevant system input data I that causes vulnerability activation
in the suspicious statements of that unit. Thus, in the second phase,
we analyze the test units with symbolic execution and consider
the rest of the program a black box. In this step, we generate a

constraint tree for each test unit, which contains path constraints
on unit input data for each node and vulnerability constraints on
unit input data for nodes suspected to have memory corruption
vulnerability. In the third phase, we perform Monte Carlo simula-
tion and execute the whole program with multiple system input
values. If system input I reaches the test unit with input value i
and causes the execution of node n in the unit constraint tree, we
annotate node n with the pair (I, ix) to record which input data
cause executing that node. Then, for each possibly vulnerable node
in the unit tree whose constraints are satisfiable, we use function
fitting technique [24] to estimate the relation between system and
unit input data as a function. Finally, in the fourth phase, we use
the calculated path and vulnerability constraints and the estimated
function to generate appropriate system input data that enter the
program, reach the test unit, and cause vulnerability activation in
vulnerable statements. In the following, we explain each phase in
more detail.

3.1 Test units extraction

In the first phase, the program’s executable code is statically an-
alyzed to search for functions that probably contain vulnerable
statements. In order to locate possible vulnerabilities, we first spec-
ify how each vulnerability class appears in executable codes. We
use the general vulnerability specification method presented in [18]
to describe memory corruption vulnerabilities. In this method, a
vulnerability is described as a single or a sequence of events. Each
event is represented as a pair of {CONT, Rule}, which {CONT} de-
fines the location of data in a program statement that is of concern
in a vulnerability class and the {Rule} defines the conditions on
CONT data, which result in intended vulnerability activation.

It is worth mentioning that since we implement our method
in angr framework and it translates binary instructions into VEX
intermediate language, we define the containers and rules in our
specifications based on the structure of VEX language. Angr trans-
lates each assembly instruction into one or multiple statements
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Figure 3: The structure of statements and expressions in VEX. Part (a) shows the structure of some of the statements in VEX.
Part (b) shows the structure of some of the expressions in VEX [18].

({CONT1,CONT2},True) > ({CONT3,CONT4},Rulel)

(1) CONT1 = malloc(CONT2)
(2) ST1e(CONT3) = CONT4
Container[HOF].tag = Ist_Store
Container[HOF].Store.addr = CONT3
Container[HOF].Store.data->tag = Iex_RdTmp
Container[HOF].Store.data->Iex.RdTmp.tmp = CONT4
Rulel:
CONTT < CONT3 < CONT1 + CONT2
A 1en(CONT4) > CONT1 + CONT2 - CONT3

Figure 4: Specification of heap-based buffer overflow
vulnerability in VEX language

in VEX language. VEX statements have different types, such as
Store, WrTmp, etc. In addition, each statement might contain one
or more expressions of different types, such as Load, Get, etc. Fig. 3
presents the structure of the most common statements and expres-
sions in VEX. Using the proposed method in [18] and based on VEX
intermediate language, we specify four multi-event vulnerability
classes, i.e., stack-based buffer overflow, heap-based buffer overflow,
double-free, and use-after-free. In our specification, the symbol >
represents the order of events.

3.1.1 Test unit of heap-based buffer overflow vulnerability. Our
proposed specification for heap-based buffer overflow vulnerability
is presented in Fig. 4. This specification consists of two events:
allocating a heap buffer and storing some data in that buffer.

In the first event of this vulnerability specification, we locate
malloc function calls and consider their length arguments and
return values as CONT2 and CONTT, respectively. Here, CONT1 repre-
sents the local variable storing address of the allocated buffer.

In the second event of the specification, we look for Store state-
ments and check the source and destination of these statements.
To clarify the specification, the detailed structure of Store state-
ment is represented in green in Fig. 4. As shown in this struc-
ture, the source and destination of the Store statement are de-
fined in the Store.data and Store.addr sections, respectively.
Also, the Store.data section is an expression with type RdTmp, in
which the RdTmp. tmp part refers to the temporary variable con-
taining the source data of the store operation and is considered as
CONT4. Moreover, the destination buffer address, which is defined
by Store.addr part of the Store statement, is considered as CONT3.
Regarding to Rulel, heap-based buffer overflow occurs when a store
operation is performed to a memory location in the range of an
allocated heap buffer and length of the source data is more than
size of the destination heap buffer, or length(CONT4) > CONT2.

To determine the test units, we identify allocated heap buffers
(CONT1) in executable codes and search for functions in which some
data is stored in these buffers. Such functions are considered test
units for this vulnerability. It is worth mentioning that since the
address of a heap buffer is dynamically assigned at run time, we
refer to the local pointer that stores the address of the allocated heap
buffers in our static analysis. Since this pointer is a local variable and
located in the stack memory, it is statically available and helps to
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follow the usage of heap buffers throughout the program statements
and functions. We also assume that the length of the allocated heap
buffer in the malloc function is a constant value and is available
during the static analysis.

Another issue in static tracing of heap buffers arises in nested
function calls. A heap buffer may be sent as an argument to other
functions, and thus we need to trace it among the stacks of called
functions. As a solution, for heap buffers passed to other functions
or returned from function calls, we use the calling conventions
in assembly languages to locate the local pointers holding the ad-
dresses of these buffers. The same challenge exists in identifying
test units of the other memory corruption vulnerability classes,
which is solved similarly.

3.1.2  Test unit of stack-based buffer overflow vulnerability. Iden-
tifying test units for stack-based buffer overflow vulnerability is
more challenging in comparison with heap-based buffer overflow.
This challenge arises since there is no specific instruction in exe-
cutable codes for defining stack buffers. When a buffer is defined in
the high-level source code, no instruction is accordingly added to
the corresponding executable code. Therefore, unlike heap buffers,
which are explicitly allocated by calling a dynamic memory al-
location function, it is not possible to exactly determine the size
and location of a stack buffer based on a specific instruction in
executable codes.

As a solution, we estimate the location and maximum length of
stack buffers according to the calling conventions and the standards
of accessing stack variables in executable codes. When a function is
called, its arguments, the return address (rip), and the base frame
pointer of the caller function (rbp) are respectively pushed into the
stack. Then, local variables of the called function are placed into
the stack. The local variables of each function are accessed using
the base frame pointer of its stack memory, which is stored in a
specific register, e.g., rbp in x64 instruction set architecture. In this
way, the start address of a stack buffer is calculated as rbp-x, which
x helps to estimate the length of that buffer. If some data larger
than x bytes is stored in such stack buffer, it overwrites not only
other local variables but also the contents of the base frame pointer
and probably the return address in the stack. Thus, we locate stack
buffers using instructions that access memory buffers with address
rbp-x, and estimate their maximum lengths as x.

As an example, Fig. 5 presents the high-level code of a function
in C language and its equivalent x64 assembly code. As shown in
this figure, the start address of buffer is rbp-32, and thus it is 32
bytes far from the stored base frame pointer in the stack. Therefore,
we estimate the maximum length of buffer as 32 bytes.

A drawback of our method in estimating the buffer length is that
we can only detect stack overflows that corrupt the rbp value. If
stack-based buffer overflow occurs in a way that only local variables
within the function are corrupted, but the overflowing data could
not be long enough to overwrite the rbp value in the stack, our
method is not able to detect the vulnerability.

Our proposed specification for stack-based buffer overflow vul-
nerability is presented in Fig. 6. This specification consists of three
events: accessing the rbp register, accessing a stack buffer with
address rbp-x, and storing some data in a stack buffer.
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1| void func() func:

2 push rbp

3 /xbuff definition*/ mov  rbp, rsp

4 char buff[20]; lea rax, [rbp-32]

5 /*buff usagex/ mov  DWORD PTR [rax], 7102838
6 strepy(buff, "val"); pop rbp

70} ret

Figure 5: An example of a C code and its equivalent assembly
code for using stack memory based on x64 architecture

(CONT1,True) &> ({CONT2,CONT3},Rule1) > ({CONT5,CONT6},Rule2)

(1) CONT1 = GET:164(20)
Container[SOF].tag = Ist_WrTmp
Container[SOF].WrTmp.tmp = CONT1
Container[SOF].WrTmp.data->tag = Iex_Get
Container[SOF].WrTmp.data->Iex.Get.offset = 20

(2) CONT4 = Add64(CONT2, CONT3)
Container[SOF].tag = Ist_WrTmp
Container[SOF].WrTmp.tmp = CONT4
Container[SOF].WrTmp.data->tag = Iex_Binop
Container[SOF].WrTmp.data->Iex.Binop.op = Iop_Add64
Container[SOF].WrTmp.data->Iex.Binop.argl = CONT2
Container[SOF].WrTmp.data->Iex.Binop.arg2 = CONT3

(3) ST1e(CONT5) = CONT6
Container[SOF].tag = Ist_Store
Container[SOF].Store.addr = CONT5
Container[SOF].Store.data->tag = Iex_RdTmp
Container[SOF].Store.data->Iex.RdTmp.tmp = CONT6

Rulel:
CONT1 == CONT2 A CONT3 < @
Rule2:
CONT4 < CONT5 < CONT2 A 1en(CONT6) > |CONT3|

Figure 6: Specification of stack-based buffer overflow
vulnerability in VEX language

In the first event of the specification, we consider statements in
which the program accesses the value of rbp register and stores
it in a temporary variable. In this event, the value of rbp regis-
ter is extracted and stored in a temporary variable using a WrTmp
VEX statement. The source and destination of WrTmp are defined by
WrTmp.data and WrTmp. tmp parts of this VEX statement, respec-
tively. According to the detailed structure of this statement, rbp
register is accessed with a WrTmp statement that its WrTmp.data
section is an expression of type Get in which Get.offset is equal
to 20. We consider WrTmp. tmp as CONT1 to record the temporary
variable that stores the value of rbp register.

In the second event, we look for statements that compute the
value of rbp-x. This operation is performed in a WrTmp statement
in which the WrTmp.data section is a Binop expression of type
Add64. The first argument of this operation, which is defined by
Binop.argl, is considered as CONT2, and the second one, defined
by Binop.arg2, is considered as CONT3. Rulel states that the value
of CONT2 must be equal to the temporary variable in which the
content of the rbp register was stored in the previous step (CONT1).
Also, CONT3 must be a negative number as rbp-x is calculated using
the Add64 operator. The absolute value of the second argument in
the Binop expression (JCONT3|) is assumed as the maximum size of
the buffer. The result of this operation is stored in WrTmp. tmp part
and is considered as CONT4.

In the third event, we locate Store statements that store some
data in a stack buffer. In this statement, Store.data is an expres-
sion of type RdTmp, and the temporary variable storing the source
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({CONT1,CONT2}.True) > (CONT3,Rule1) > (CONT4,Rule2)

(1) CONT1 = malloc(CONT2)
(2) free(CONT3)
(3) free(CONT4)

Rule1:
CONTT < CONT3 < CONT1 + CONT2

Rule2:
CONT1 < CONT4 < CONT1 + CONT2

Figure 7: Specification of double-free vulnerability in VEX

1| char * childl(char * source)

2| {

3 source = (char x)malloc(10*sizeof(char));
4 return source;

5

6| void child2(char * source, int n)

7

8 char * src_copy;

9 src_copy = (char *)malloc(n*sizeof(char));
10 strncpy(src_copy, source, n);

11 free(source);

12 /* some lines of code */

13 free(src_copy);

}
15| void parent()
16| {

17 int n = 10; char * source;

18 source = child1(source);

19 child2(source, n);

20 /* FLAW: freeing memory twice */
21 free(source);

22|}

23| int main(void)

24| {

25 parent(); return 0;

26| }

Figure 8: Example of a C code with double-free vulnerability

data, defined by RdTmp. tmp section, is considered as CONT6. The
destination buffer address is also defined by Store. addr part of the
Store statement and is considered as CONT5. According to Rule2,
stack-based buffer overflow occurs when the destination address
in the Store statement (CONT5) is in the range of a stack buffer
and the source data (CONT6) is larger than the maximum size of the
destination stack buffer.

We use this specification and locate stack buffers throughout
the program’s executable code and consider the functions in which
a store operation is performed on a stack buffer as test units. It is
worth mentioning that we use the same method as in the previous
section to trace the stack buffers in nested function calls.

3.1.3 Test unit of double-free vulnerability. Our proposed speci-
fication for double-free vulnerability is presented in Fig. 7. This
vulnerability arises in a scenario with an allocation of a heap buffer
and two times freeing of that buffer.

For the first event, we locate all malloc function calls to deter-
mine the addresses of pointers that point to the allocated buffers
and consider them as CONT1. For the second and third events, we
find all free function calls in the program’s executable code, and
extract their input argument demonstrating the pointer address of
the released buffer as CONT3 and CONT4. According to Rulel and
Rule2, double-free vulnerability occurs when the memory address
of a heap buffer is freed by calling the free function twice.

The test unit for double-free vulnerability is identified as a func-
tion that consists of the three events related to this specification,

({CONT1,CONT2},True) &> (CONT3,Rulel) &> ((CONT4,Rule2) | (CONT5,Rule3))

(1) CONT1 = malloc(CONT2)

(2) free(CONT3)

(3) Not_Imp = LDle:I64(CONT4)
Container[UAF].tag = Ist_WrTmp
Container[UAF].WrTmp.tmp = Not_Imp
Container[UAF].WrTmp.data->tag = Iex_Load
Container[UAF].WrTmp.data->Iex.Load.addr = CONT4

(4) ST1e(CONT5) = Not_Imp
Cont[UAF].tag = Ist_Store
Container[UAF].Store.addr = CONT5
Container[UAF].Store.data->tag = Iex_RdTmp
Container[UAF].Store.data->Iex.RdTmp.tmp = Not_Imp

Rulel:

CONTT < CONT3 < CONT1 + CONT2
Rule2:

CONTT < CONT4 < CONT1 + CONT2
Rule3:

CONTT < CONT5 < CONTT + CONT2

Figure 9: Specification of use-after-free vulnerability in VEX

i.e., buffer allocation, buffer deletion, and buffer re-deletion. As an
example, in the sample C code in Fig. 8, the memory allocation
operation is performed in function child1, then the allocated heap
buffer is deleted in function child2, and again deleted in function
parent. In this example, parent is the function that contains all
three events of the vulnerability specification, which happen se-
quentially. Hence, parent is considered a test unit for double-free
vulnerability in this code.

3.1.4  Test unit of use-after-free vulnerability. Our proposed specifi-
cation for use-after-free vulnerability is presented in Fig. 9. This
vulnerability appears in a scenario with three events: allocating a
heap buffer, deleting the same buffer, and then using that buffer
in a read operation with a WrTmp statement or in a store operation
with a Store statement. The Not_Imp value in this specification is
assigned to the parts of the statements, which are not important.

According to this specification, we consider functions that con-
tain malloc, free, and load or store operations on the same heap
buffer as a test unit.

3.2 Processing the test units

In this phase, we perform symbolic execution for the extracted
test units. For each test unit, a constraint tree is generated that
represents basic blocks of the program as its nodes. We annotate
each node with some metadata that indicates the system state at
that point of the program and contains the path constraints from the
beginning of the test unit to the given node, the node constraints,
and vulnerability constraints. In the following, we use Term(n),
Const(n), and VulConst(n) to represent the node constraints, the
path constraints from the beginning of the test unit to the given
node n, and the vulnerability constraints of node n, respectively.

The vulnerability constraints are calculated according to the
vulnerability specifications in the previous section. To make this
step clear, an example test unit and its corresponding constraint
tree are presented in figure Fig. 10. In this figure, the two red nodes
represent basic blocks with probably vulnerable statements because
they copy some data into the msg buffer. Thus, according to size of
the msg buffer, a vulnerability constraint is calculated in addition
to the path constraints for these nodes.
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Path Const = {}
Node Const = {}

Path Const = {x< 10}
Node Const ={x< 10}
Vul Const = {len("Exception...") > 10}

Path Const = {x>= 10}
Node Const = {x>= 10}

N

Path Const = {x>= 10 & x-y== 5}
Node Const = {x-y == 5}
Vul Const = {len(str) > 10}

Path Const = {x>= 10 & x!= 5}
Node Const= {xy!= 5}

(a) Extracted unit tree
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1| void testUnit(int x, int y, char * str)
2| {

3 char * msg = (char *)malloc(10);
4 if(x >= 10) {

5 if (x-y ==5) {

6 strcpy(msg, str);

7 3

8 }

9 else {

10 strcpy(msg, "Exception...");
11 3}

12 printf("%s", msg);

13| 3}

(b) Source code of a test unit

Figure 10: An example of a test unit and its corresponding constraint tree

3.3 Learning and simulation process

After extracting the constraint tree, the program execution is simu-
lated, and its behavior is learned in the third phase of our solution.
Details of the operations in this phase are presented in Algorithm 1.
This algorithm is a revised version of the Cover algorithm presented
in [12], and our modifications are shown in blue.

In this algorithm, first in lines 1 and 2, we perform n-factor
Monte Carlo simulation on the program by picking values over a
d-dimensional space for d input arguments. We generate possible
combinations of input vectors and execute the program by giving
them as system arguments. For each system input vector, we moni-
tor the program execution and record the corresponding unit input
vector to annotate nodes of the unit tree with pairs of the system
and correlated unit input vectors (V, vx) that reach these nodes.

Next, in lines 3 and 4, we explore the constraint tree and analyze
only nodes located in a possibly vulnerable path. A vulnerable path
is defined as a path from the root to a leaf in the constraint tree,
which contains some nodes with probably vulnerable statements,
e.g., a store operation to a stack buffer or a free function call. In
contrast to the algorithm in [12], which processes all nodes of the
constraint tree at this step, we restrict our analysis to fewer nodes
according to the specification of the target vulnerability class to
improve the efficiency of our method.

In lines 5 to 9, we check if these nodes and their siblings have
been executed during the simulation. If yes, we use TAR3 treatment
learning algorithm [16] to estimate the range of system inputs that
could explore the desired node in the unit. Otherwise, in lines 10 to
12, for each uncovered node whose path constraints are satisfiable, a
function named ComputeMap is called that estimates the correlation
between system and unit input data as a function f,. The algorithm
of this function is presented in Algorithm 2.

3.4 Test data generation

Until now, we have only considered path constraints in generating
system input data. In lines 16 to 23 of Algorithm 1, for each node
containing a possibly vulnerable statement whose path constraints
are satisfiable, we attempt to generate system input data consistent
with both path and its calculated vulnerability constraints. To do
so, in lines 18 and 19, for each node that has been covered in the
simulation step, we solve the path and vulnerability constraints
of the node and generate appropriate unit input data to reveal

Algorithm 1 Cover(S,U, T)

Input: System S with inputs I with d = |I|, unit U with inputs i and constraint tree
T obtained from applying symbolic execution to the unit U
1: Perform n-factor combinatorial MC simulation over space R4
2: (V,0) « {(a,b)| aisasystem level vector and b is the corresponding monitored
unit level vector}

3: for node n in T using BFS do

4: if n is in a possibly vulnerable path then

5: if n and n’siblings are covered then

6: V' « {a € V| acover n}

7: V" — V\V’

8: (In, Ry, _) < RunTar3(L,V, V', V")

9: Vj € Iy store the range r; € R, for j
10: else if n is satisfiable but not covered then
11: C « Term(n)

12: (In, in, fn) < ComputeMap(C,I,V, v, n, Parent(n))
13: end if

14: end if

15: end for

16: for node n in T that n is possibly vulnerable and satisfiable do
17: Cp < Const(n) A VulConst(n)

18: if n is covered then

19: Generate input using C, and Vj € I, use r; from line 9
20: else

21: Generate input using C,, and f;, from line 12

22: end if

23: end for

vulnerability in that node. In the last step, using the range of system
inputs calculated by TAR3 algorithm, we find relevant system input
data for the intended unit input data.

Next, in lines 20 and 21, for each node that has not been covered
in the simulation step, we use the fitted function f;, to find relevant
system input data for the unit input data consistent with calculated
path and vulnerability constraints.

To summarize the difference between our Cover algorithm and
the one presented in [12], first in line 4, we improve the perfor-
mance of our analysis by only considering nodes in potentially
vulnerable paths, while in [12], all the nodes are analyzed in this
step even though they might not contain any vulnerability. Next,
we consider both path and vulnerability constraints, and this is stat-
ically performed using symbolic execution. However, the algorithm
in [12] only considers the path constraints calculated gradually
using dynamic symbolic execution by generating new input data
that explore uncovered paths in the unit. Thus, we calculate the
constraints more quickly. Since our symbolic analysis is restricted
to a single function, dynamic symbolic execution accuracy and
coverage advantages over symbolic execution are not significant
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here. Finally, we consider the path and vulnerability constraints, in
line 17, to generate appropriate system input values that reach the
intended nodes in the test unit and activate their vulnerabilities. In
contrast, the algorithm in [12] only considers the path constraints
for generating system inputs that cover the nodes of the unit.

34.1 ComputeMap algorithm. We have used the same algorithm
as introduced in [12] for the ComputeMap function, which is pre-
sented in Algorithm 2. Here, we describe this algorithm to clarify
the whole process for the reader. In summary, this algorithm at-
tempts to define the correlation of system and unit input parameters
as a function. Due to the complexity of applying curve fitting to
a large set of data and the presence of a large number of parame-
ters, the algorithm initially considers the constraints of each node
individually. More precisely, instead of considering all parameters
in Vars(Const(n)) as ip, the algorithm first attempts to reduce the
unit and system input parameters by selecting a subset of unit
input parameters i, appearing in Vars(Term(n)) and a subset of
system input parameters I,, that are most effective on the values of
parameters in ip.

Thus, the unit input parameters related to the node constraints
are extracted, and the first 20% of system vectors that are more
compatible with this constraints subset are selected as a set V’.
Afterwards, TAR3 algorithm is applied to the sets V' c V and V" =
V\V’, and if a smooth relationship is established therebetween, the
function f, is built using curve fitting. Otherwise, the process is
recursively repeated by adding parent node constraints to the given
node in order to establish a smooth relationship. A smooth function
is a function that has continuous derivatives up to a specific order.

If a smooth relationship is not found by including all terms in
Const(n), in lines 13 to 20, we walk up through the unit tree to find
a parent node with enough system input vectors in its annotation.
Such a node is covered in the simulation step with an appropriate
number of input vectors (Vi,vx) that helps to better estimate the
function f, using the curve fitting algorithm.

4 Evaluation

UbSym is implemented as a plugin for angr framework. In our
implementation, string data type is also supported for detecting
vulnerabilities in string manipulation functions in addition to int,
short, unsigned int, char, float, double, and enum data types
supported in the proposed approach in [12].

We have designed two experiments to evaluate our solution. In
the first experiment, a set of 225 benchmark programs provided
by the National Institute of Standards and Technology in Software
Assurance Reference Dataset (SARD) project [1] is selected. This set
is divided into four groups of vulnerable programs for evaluating
the detection performance of four vulnerability classes. The test
programs in this set contain a wide range of vulnerable instructions,
which helps us to examine our method in various scenarios.

The test programs in NIST SARD are classified based on the
classification of vulnerabilities in the Common Weakness Enumer-
ation (CWE) database. We have tested our tool on the programs of
classes CWE122_Heap_Based_Buffer_Overflow and CWE121_Stac
k_Based_Buffer_Overflow for heap-based and stack-based buffer
overflow vulnerabilities. The vulnerability occurs in these programs
when some constant data is copied into a heap or stack buffer using
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Algorithm 2 ComputeMap(C,I,V,v,n,n")

Input: Constraints set C, System Inputs I, System vectors V, Unit vectors v, a node
n that we want to cover, a node n’ that is in the parent hierarchy of n
Output: (I, in, fn) where i, = Vars(C) and I, = f (i)
1: ip = Vars(C)
2: V' « {a € V| ais in 20% of points closet to C}

3V« V\V/
4: (I, R,Smooth) <« RunTar3(I,V,V’, V")
5: if Smooth then
6: Build map I, = f(in) > curve fitting step
7: else
8: if n’ exists then
9: C«— CATerm(n')
10: (In, in, fn) < ComputeMap(C,I,V, v, n, Parent(n’))
11: else
12: n" «n
13: while Parent(n’’) exists do
14: C « C ATerm(Parent(n”))
15: n’’ « Parent(n”’)
16: V' « {a € V| acovern”}
17: if |V’| = Threshold then
18: break
19: end if
20: end while
21: V" — V\V'
22: (I, Rp, ) < RunTar3(L,V, V', V")
23: in =Vars(C)
24: Build map I, = f(in) > curve fitting step
25: end if
26: end if

strcpy, strcat, memcpy, and memmove functions. To better evalu-
ate our proposed method, we have made the path constraints in
the test programs more complicated by adding an additional if
statement to the vulnerable paths. In addition, instead of copying
constant data into a heap or stack buffer, we have copied an input
variable, entered by the user as a command-line argument, into that
buffer to create a vulnerability constraint in the test unit. A vulner-
able function in one of these benchmark programs is presented in
Fig. 11 as an example and our added if statement is underlined in
line 15. The same if statement is similarly added to all benchmark
programs.

We have also tested our tool on CWE416_Use_After Free and
CWE415_Double_Free benchmark programs to evaluate the perfor-
mance of our method in detecting use-after-free and double-free
vulnerabilities, respectively. The if statement mentioned above
is also added to the vulnerable path in these programs. In CWE
415_Double_Free programs, the if statement is placed on top of
the second free function call and in CWE416_Use_After Free
programs, it is placed on top of the memory usage instruction.

In the second experiment, we have created a test program for
each vulnerability class with several functions and more compli-
cated path and vulnerability constraints to better evaluate the effi-
ciency of our method. The source code of these programs, along
with their details, are presented in the Appendix.

In both experiments, we have compared UbSym with two other
tools, MACKE [19] and Driller [23], which use similar methods for
detecting various vulnerability classes in C programs.

4.1 Experiment 1

Table 1 represents the results of our first experiment in testing
NIST SARD vulnerable programs. Each test program in this set has
a function whose name includes the word bad, which contains a
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1| void CWE121_Stack_Based_Buffer_Overflow__CWE805_char_declare_memcpy_34_bad(char * source)
2| {
3 char * data;
4 CWE121_Stack_Based_Buffer_Overflow__CWE805_char_declare_memcpy_34_unionType myUnion;
5 char dataBadBuffer[50];
6 char dataGoodBuffer[1007;
7 /* FLAW: Set a pointer to a "small" buffer. This buffer will be used in the sinks as a destination * buffer in various memory copying functions using a "large"
source buffer. =/
8 data = dataBadBuffer;
9 datal@] = '\@'; /% null terminate %/
10 myUnion.unionFirst = data;
11 {
12 char * data = myUnion.unionSecond;
13 {
14 /* POTENTIAL FLAW: Possible buffer overflow if the size of data is less than the length of source */
15 if(source[0] == ’7’ && source[1] == ’/’ && source[2] == ’4’ && source[3] == ’2’ && source[4] == ’a’ && source[5] == ’8’ && source[75] == ’a’) {
16 memcpy (data, source, strlen(source)xsizeof(char));
17 }
18 data[100-1] = '\@'; /x Ensure the destination buffer is null terminated */
19 printLine(data);
20 }
21 3
2|3
Figure 11: A sample vulnerable unit in benchmark programs
Table 1: Results of evaluating the approaches on the selected group of test programs in NIST benchmark programs
Heap_Based_Buffer_Overflow Stack_Based_Buffer Overflow Use_After Free Double_Free
Method Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
MACKE 0.78 0.87 0.60 0.81 0.75 0.84 0.21 1.00 0.21 0.82 1.00 0.82
Driller 1.00 1.00 1.00 0.90 1.00 0.77 - - - 0.85 1.00 0.85
UbSym 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Precisi TP alarm for each test program using a precise vulnerability detection
recision = o rp @ mechanism. We have used three evaluation metrics in this experi-
TP ment, i.e., Precision, Recall, and Accuracy, as shown in (1), (2), and
Recall = TP+ FN @) (3), respectively. In these equations, TP is the number of true posi-
TP + TN tives, TN is the number of true negatives, FP is the number of false
Accuracy = TP+ TN + FP + FN ©) positives, and FN is the number of false negatives. Since UbSym
detects vulnerabilities in the test programs of this experiment in
800 - ‘ T UbS‘ less than 120 seconds, we have set the timeout value as 900 seconds.
=N m . . . .
© TS '1)11 Thus, if a tool does not detect a vulnerability in a test program in
riler
I B MACKE less than 900 seconds, we consider it a false negative.
= 600 - Given the experimental results in Table 1, UbSym has detected
\g all vulnerabilities of NIST SARD test programs with no false alarms.
&= Moreover, it has discovered 523 test units in the first step, when
g . . . .
g applying static analysis on the benchmark programs, among which
= . .
g only 225 test units are actually vulnerable. This way, UbSym has
= omitted 298 units after applying symbolic execution as it could not
find any vulnerable node, in the corresponding unit trees, whose
path and vulnerability constraints are satisfiable.
Considering the average execution time of analyzing each group

CWE122

CWEI121 CWEA416 CWEA415
Figure 12: The average analysis time of the tools for a group

of test programs in NIST benchmark programs

vulnerable statement, and one or multiple functions whose names
include the word good, containing similar statements without vul-
nerability. Thus, we expect to achieve exactly one true positive

of test programs, as shown in Fig. 12, UbSym was considerably
faster than Driller. Although the analysis time of MACKE in this
experiment has been less than that of our tool, it has generated more
false alarms and less accurate results. Additionally, MACKE only
generates local input data for executing a single unit and does not
consider the path constraints out of the unit. On the contrary, our
proposed method generates accurate test data values for running
the whole program from the beginning and reaching the vulnerable



Conference’17, July 2017, Washington, DC, USA

Sara Baradaran, Mahdi Heidari, Ali Kamali, and Maryam Mouzarani

Table 2: Results of evaluating the approaches on the complicated test programs

Heap_Based_Buffer_Overflow Stack_Based_Buffer_Overflow

Use_After Free Double_Free

Method TP FP TN FN Time,s

TP FP TN FN Times

TP FP TN FN Times TP FP TN FN Time,s

MACKE 3 0 0 3 290 3 0 0 3
Driller 4 0 0 2 3325 4 0 0 2
UbSym 6 0 0 0 517 6 0 0 0

1 0 0 3 141 0 0 0 4 140

3433 - - - - - 3 0 0 1 3425
1340 4 0 0 0 110 4 0 0 0 88

statement in the test unit. This is a reason that causes our method
to take more time to test and analyze a program.

It is worth mentioning that Driller only detects vulnerabilities
making the program crash. Therefore, it has not been tested on C
WE416_Use_After_Free programs in our experiments as it could
not detect vulnerability in these programs. To be more precise, in
Fig. 12, about 28% of the total analysis time in analyzing CWE122-
Heap-Based-Buffer-Overflow programs refers to the execution of
the Cover algorithm and curve fitting process. Also, for analyz-
ing CWE121-Stack-Based-Buffer-Overflow programs, 33% of the
analysis time and for analyzing CWE415-Double-Free and CWE416-
Use-After-Free programs, 56% of the total time refers to the learning
process, and the rest of it is spent to apply symbolic execution.

4.2 Experiment 2

In the second experiment, we have designed four test programs
that contain more vulnerable instructions and more complicated
constraints in comparison with the test programs in the first ex-
periment. The structures of these programs are similar, but they
have different vulnerable statements. There are six vulnerability
occurrences through three functions in programs that contain stack-
based or heap-based buffer overflow and four vulnerability oc-
currences through two functions in programs that contain use-
after-free or double-free vulnerability. Also, there are various path
constraints inside and outside of each test unit. Thus, UbSym is
supposed to identify test units and analyze them to generate twenty
true positive alarms in the test programs altogether. The source
code of the test programs in this experiment, along with its details,
is presented in the Appendix.

The results of this experiment are demonstrated in Table 2. In
this experiment, we have set the timeout value for analyzing each
program as 1 hour. As shown in Table 2, MACKE could detect only
seven vulnerability occurrences in the given programs as it could
not analyze complicated path conditions. As well, Driller could only
detect eleven vulnerability occurrences since it takes much time to
analyze all execution paths. On the contrary, UbSym has been able to
precisely detect all vulnerabilities and it has generated appropriate
test data for the whole program, which enter the programs from
the beginning and reveal the vulnerability in the test units. Besides,
the testing time for UbSym has been much less than that of Driller.

The results of these two experiments clearly demonstrate the
advantage of restricting symbolic execution scope and applying
machine learning techniques in estimating the program’s behavior
for detecting various vulnerability classes. This way, we leverage
symbolic execution and machine learning techniques in a comple-
mentary manner to elevate the efficiency of vulnerability detection.

5 Discussion

In this section, we discuss the limitations of UbSym and some future
directions to further improve automated vulnerability detection.

In the current version of UbSym, we restrict the scope of symbolic
execution and decrease the number of symbolic variables by only
considering function (test unit) parameters. This way, we tackle the
path explosion problem in a large group of programs. Though by
limiting symbolic execution to test units we significantly lower the
chance of path explosion, in extremely large units UbSym might
fail to generate the unit tree for an entire test unit. Thus, we intend
to use some pruning techniques to elevate the scalability of our
method in the future.

Another limitation of UbSym is the case when stack-based buffer
overflow occurs in a way that only local variables inside the test unit
are corrupted. Since we approximate the maximum size of stack
buffers, UbSym could only detect vulnerabilities in cases where
the content of the base frame pointer could be overwritten by a
sufficiently long data.

Another interesting future extension of our method might be to
enhance the accuracy and time of the learning process by employing
new learning models, which in turn improves the overall process
of system input generation from unit inputs.

6 Conclusion

While symbolic execution is sound and complete in theory, this
method faces challenges in testing real-world programs, such as
path explosion. The number of symbolic states grows exponentially,
and thorough analysis of real-world programs becomes infeasible.

We proposed a method for applying symbolic execution to detect-
ing four classes of memory corruption vulnerabilities in executable
codes, i.e., heap-based buffer overflow, stack-based buffer overflow,
use-after-free, and double-free. We limit the scope of symbolic
execution to the test units to avoid path explosion. We specified
intended memory corruption vulnerability classes in executable
codes and presented a method for automatically determining the
test units in arbitrary programs accordingly. Using symbolic execu-
tion, we generate appropriate unit input data for detecting memory
corruption vulnerabilities according to the path and vulnerability
constraints in vulnerable statements of the test unit. Then, we use
machine learning techniques to estimate the relation between sys-
tem and unit input data as a function and find consistent system
input data that enter into the program from the beginning, cause the
execution of vulnerable statements in the test unit, and reveal their
vulnerabilities. The experiments showed that this method achieves
more efficient and accurate results in detecting vulnerabilities in
complex programs compared to similar tools.
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Appendix

The base structure of the designed complex programs is a simple
authentication code by which users carry out sign-up and sign-
in operations. The source code of these programs is presented in
Fig. 13. To generate the test program of each vulnerability class,
the commented lines for each specific vulnerability should be un-
commented. In the following, the structure of the test program that
contains heap-based buffer overflow vulnerability is explained as
an instance.

This program begins by receiving a username and password in
the console to sign-up a user. If the condition in line 99 is satisfied,
the vulnerable function signup would be called. In this function,
two heap buffers are allocated in lines 6 and 7. As there are two
copy operations with memcpy function calls in lines 14 and 17, our
solution identifies this function as a test unit. There is a path con-
straint in this function in line 10; therefore, if the input strings for
username and password satisfy the path constraints in lines 99 and
10, and their lengths are more than the lengths of the destination
heap buffers in the copy operations, they would cause heap-based
buffer overflow. Note that the path constraint in line 99 is out of
the test unit and should be determined through machine learning.
UbSym calculates the path constraints in line 10 using symbolic
execution. It generates appropriate input data for the scanf oper-
ations in line 95, which are consistent with both path constraints
inside and outside the unit.

There are two other test units in this program, authentication
and check functions, which cause heap-based buffer overflow by
calling memcpy and strcpy functions, respectively. The same chal-
lenge exists in these functions for our solution to calculate the path
constraints inside the test unit and estimate the ones outside it.
UbSym could successfully identify these units and generate appro-
priate test data for the whole program, which explore vulnerable
instructions in the unit and cause heap-based buffer overflow.
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1| #define def_user "u-admin-"

2| #define def_pass "password"

3| void signup(char *username, char *password)

4

5 /* Uncomment the following two lines for heap-based buffer overflow & use-after-free & double-free */
6 // charx tmp_user = (char *)(malloc(50*sizeof(char)));

7 // char* tmp_pass = (char x)(malloc(50*sizeof(char)));

8 /* Uncomment the following line for stack-based buffer overflow */

9 // char tmp_user[16], tmp_pass[16];

10 if((username[1] >= 'Q' && username[1] <= '9') && !strncmp(password, "passWord", 8))

11 {

12 /* POTENTIAL FLAW: data may not have enough space to hold source */

13 /* Uncomment the following line for heap-based & stack-based buffer overflow x/

14 // memcpy(tmp_user, username, strlen(username));

15 /* POTENTIAL FLAW: data may not have enough space to hold source */

16 /* Uncomment the following line for heap-based & stack-based buffer overflow x/

17 // memcpy(tmp_pass, password, strlen(password));

18 if(strlen(tmp_pass) < 12) { printf("The selected password is too weak\n"); return; }

19 int fd = open(tmp_user, O_WRONLY|O_CREAT, 0777);

20 if(fd < @) { printf("An unexpected problem occurred!\n"); return; }

21 write(fd, tmp_pass, sizeof(tmp_pass));

22 printf("%s your registration was successful\n", tmp_user);

23 /% POTENTIAL FLAW: Free data here - line 30 frees data as well */

24 /* Uncomment the following line for double-free */

25 // free(tmp_user); free(tmp_pass);

26

27 else if(!(username[1] >= '@' && username[1] <= '9')) {printf("The second letter of username must be a number\n");}
28 else { printf("The password must start with the word <passWord>\n"); }

29 /* Uncomment the following line for double-free & use-after-free & heap-based buffer overflow */
30 // free(tmp_user); free(tmp_pass);

31 /* POTENTIAL FLAW: Use of data that may have been freed in line 30 x/

32 /* Uncomment the following line for use-after-free %/

33 // tmp_user[50-1] = '\@'; tmp_pass[50-1] = '\@';

34

35| bool check(char xusername, char *password)

36| {

37 /* Uncomment the following two lines for heap-based buffer overflow & use-after-free & double-free */

38 // char* tmp_user = (char x)(malloc(50*sizeof(char)));
39 // char* tmp_pass = (char x)(malloc(50*sizeof(char)));

40 /* Uncomment the following line for stack-based buffer overflow */

41 // char tmp_user[16], tmp_pass[16];

42 if((username[@] >= 'A' && username[@] <= 'Z') && (username[1] >= '@' && username[1] <= '9"))
43 {

44 /* POTENTIAL FLAW: data may not have enough space to hold source */

45 /* Uncomment the following line for heap-based & stack-based buffer overflow x/
46 // strcpy(tmp_user, username);

47 /* POTENTIAL FLAW: data may not have enough space to hold source */

48 /* Uncomment the following line for heap-based & stack-based buffer overflow x/
49 // strcpy(tmp_pass, password);

50 if(!strcmp(tmp_user, def_user) && !strcmp(tmp_pass, def_pass)) {return true;}
51 char passwd[50]; int fd = open(tmp_user, O_RDONLY);

52 if(fd < @) { printf("An unexpected problem occurred!\n"); return false; }

53 read(fd, passwd, sizeof(passwd));

54 if(!strcmp(passwd, tmp_pass)) { return true; }

55 } return false;

56

57| bool signin(char *username, char *password)

58

59 if(check(username, password))

60 {

61 printf("Hey %s, you logged in successfully\n", username);

62 /* Uncomment the following line for double-free & use-after-free) x/

63 // free(username); free(password);

64 return true;

65 } else { printf("The username or password is wrong\n"); return false; }

66

67 | void authentication(char *username, char *password)

68| {

69 /* Uncomment the following two lines for heap-based buffer overflow & use-after-free & double-free */

70 // char* tmp_user = (char *)(malloc(80*sizeof(char)));

71 // char* tmp_pass = (char *)(malloc(80*sizeof(char)));

72 /* Uncomment the following line for stack-based buffer overflow */
73 // char tmp_user[32], tmp_pass[32];

74 /* POTENTIAL FLAW: data may not have enough space to hold source */

75 /* Uncomment the following line for heap-based & stack-based buffer overflow */
76 // memcpy(tmp_user, username, strlen(username));

77 /* POTENTIAL FLAW: data may not have enough space to hold source */

78 /* Uncomment the following line for heap-based & stack-based buffer overflow */
79 // memcpy(tmp_pass, password, strlen(password));

80 signin(tmp_user, tmp_pass);

81 /* POTENTIAL FLAW: Use of data that may have been freed in line 63 */

82 /* Uncomment the following line for use-after-free */

83 // tmp_user[80-1] = '\@'; tmp_pass[80-1] = '\0@';
84 /* POTENTIAL FLAW: Free data here - line 63 frees data as well */

85 /* Uncomment the following line for double-free */

86 // free(tmp_user); free(tmp_pass);

87|}

88| int main (int argc, char *argv[])

89| {

90 /* uncomment for stack-based buffer overflow x/

91 // char username[64]; char password[64];

92 /* Uncomment the following two lines for heap-based buffer overflow & use-after-free & double-free */
93 // char xusername = (char *)(malloc(100*(sizeof(char))));

94 // char xpassword = (char *)(malloc(100*(sizeof(char))));

95 printf("Enter username :"); scanf("%s", username); printf("Enter password :"); scanf("%s", password);
96 if(argc >= 3) { authentication(argv[1], argv[21); }

97 else

98 {

99 if(username[@] >= 'A' && username[@] <= 'Z') { signup(username, password); }

100 else { printf("The selected username is not valid, it must start with an uppercase letter"); }
101 }

102 }

Figure 13: Source codes of the four designed complex programs
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